organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[3-(Trifluoromethyl)phenyl]perhydro-1,2,4-triazolo[1,2-a]pyridazine-1,3-dione

Zu-Guang Sun, Xiao-Qing Li, Wei Xu and Xiao-Hua Du*

State Key Laboratory Breeding Base for Green Chemistry - Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: duxiaohua@zjut.edu.cn

Received 9 May 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.056; wR factor = 0.148; data-to-parameter ratio = 11.0.

In the title compound, $C_{13}H_{12}F_3N_3O_2$, the tetrahydropyridazine ring adopts a chair conformation. The amide ring is twisted away from the attached benzene ring by $27.3 (2)^{\circ}$. The F atoms are disordered over two positions, with site occupancy factors of 0.52 (2) and 0.48 (2).

Related literature

For related literature, see: Li et al. (2007).

Experimental

Crystal data

C13H12F3N3O2 $\gamma = 95.630 \ (3)^{\circ}$ $M_r = 299.26$ V = 656.34 (15) Å³ Triclinic, $P\overline{1}$ Z = 2a = 6.8348 (9) Å Mo $K\alpha$ radiation b = 8.0756 (11) Å $\mu = 0.13 \text{ mm}^{-1}$ c = 12.0770 (17) ÅT = 293 (2) K $\alpha = 90.994 (2)^{\circ}$ $\beta = 98.153 (2)^{\circ}$

Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.751, T_{\max} = 1.000$ (expected range = 0.722 - 0.961)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.148$ S = 0.972409 reflections 219 parameters

 $0.50 \times 0.37 \times 0.30 \text{ mm}$

3486 measured reflections 2409 independent reflections 1887 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.131$

6 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.27$ e Å⁻³

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Opening Foundation of Zhejing Provincial Top Key Disciplines for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2041).

References

Bruker (2000). SAINT-Plus (Version 6.22a) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART. Version 5.628. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, X.-Q., Sun, Z.-G. & Du, X.-H. (2007). Acta Cryst. E63, o1663-o1664.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o3840 [doi:10.1107/S1600536807039748]

2-[3-(Trifluoromethyl)phenyl]perhydro-1,2,4-triazolo[1,2-a]pyridazine-1,3-dione

Z.-G. Sun, X.-Q. Li, W. Xu and X.-H. Du

Comment

The title compound, (I), shows pesticidal activity. X-ray analysis was undertaken in order to establish its structure. The tetrahydropyridazine ring adopts a chair conformation and the five-membered ring lies close to the plane of the molecule. The C1-N1-C7-C12 torsion angle is 27.3 (2)°.

Experimental

Perhydropyridazine-1-carboxylic acid (3-trifluoromethylphenyl)-amide was prepared as described by Li *et al.* (2007). To a solution of perhydropyridazine-1-carboxylic acid (3-trifluoromethylphenyl)-amide (1.37 g, 5 mmol) in 1.2-dichloroethane (10 ml) were added the solution of bis(trichloromethyl)carbonate (0.59 g, 2 mmol) and pyridine (0.79 g, 10 mmol) in 1.2-dichloroethane (10 ml). The mixture was stirred at room temperature for 24 h. After the completion of the reaction, the mixture was washed with water and extracted with diethyl ether. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluant: petroleum ether-ethyl acetate, 1:1). Single crystals were obtained by slow evaporation of a petroleum ether-ethyl acetate solution (v/v: 1/1) (m.p. 417–418 K).

Refinement

All H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with $U_{iso}(H)$ = $1.2U_{eq}(C)$. The trifluoromethyl group was treated as disordered between two orientations with refined occupancies of 0.52 (2) and 0.48 (2), respectively. All C—F bonds lengths were restrained to 1.33 (1) Å and the displacement parameters of the disordered F atoms were restrained to an approximately isotropic behaviour. The large values of atomic displacement parameters for the disordered F atoms indicate further unresolved disorder of the trifluoromethyl group. The high value of R_{int} is due to the poor quality of the crystal.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme with only one disorder component of the –CF3 group. Displacement ellipsoids are drawn at the 30% probability level.

2-[3-(Trifluoromethyl)phenyl]perhydro-1,2,4-triazolo[1,2-a]pyridazine-1,3-dione

Crystal data C₁₃H₁₂F₃N₃O₂

 $F_{000} = 308$

$M_r = 299.26$
Triclinic, PT
<i>a</i> = 6.8348 (9) Å
<i>b</i> = 8.0756 (11) Å
c = 12.0770 (17) Å
$\alpha = 90.994 \ (2)^{\circ}$
$\beta = 98.153 \ (2)^{\circ}$
$\gamma = 95.630 \ (3)^{\circ}$
$V = 656.34 (15) \text{ Å}^3$
Z = 2

Data collection

$D_{\rm x} = 1.514 {\rm ~Mg~m}^{-3}$
Melting point: 417 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 1670 reflections
$\theta = 6.0-53.0^{\circ}$
$\mu = 0.13 \text{ mm}^{-1}$
T = 293 (2) K
Prism, colourless
$0.50\times0.37\times0.30~mm$

Bruker SMART APEX diffractometer	2409 independent reflections
Radiation source: fine-focus sealed tube	1887 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.131$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 8$
$T_{\min} = 0.751, T_{\max} = 1.000$	$k = -9 \rightarrow 9$
3486 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.148$	$w = 1/[\sigma^2(F_0^2) + (0.0885P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.021$
2409 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.37 (3)

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
F1	0.0262 (13)	0.720 (3)	0.0498 (10)	0.156 (5)	0.48 (2)
F2	-0.188 (2)	0.8924 (8)	0.0078 (9)	0.145 (4)	0.48 (2)
F3	-0.2579 (15)	0.6501 (15)	-0.0441 (6)	0.095 (3)	0.48 (2)

F1'	0.0267 (11)	0.7751 (13)	0.0497 (7)	0.099 (3)	0.52 (2)
F2'	-0.2280 (14)	0.8564 (18)	-0.0211 (9)	0.151 (4)	0.52 (2)
F3'	-0.185 (3)	0.599 (2)	-0.0220 (14)	0.164 (5)	0.52 (2)
01	0.1920 (2)	0.91691 (18)	0.39839 (12)	0.0596 (5)	
O2	-0.2422 (2)	0.56464 (18)	0.56622 (13)	0.0639 (5)	
N1	-0.0668 (2)	0.73406 (17)	0.45001 (12)	0.0402 (4)	
N2	0.1823 (2)	0.83107 (19)	0.57773 (13)	0.0468 (4)	
N3	0.0621 (2)	0.70819 (19)	0.62498 (13)	0.0478 (4)	
C1	0.1134 (3)	0.8360 (2)	0.46708 (15)	0.0429 (5)	
C2	-0.1003 (3)	0.6587 (2)	0.54966 (16)	0.0444 (5)	
C3	0.3904 (3)	0.8445 (3)	0.62633 (17)	0.0532 (5)	
H3A	0.4637	0.9350	0.5931	0.064*	
H3B	0.4471	0.7422	0.6119	0.064*	
C4	0.4049 (3)	0.8771 (3)	0.75127 (17)	0.0573 (6)	
H4A	0.5414	0.8740	0.7860	0.069*	
H4B	0.3666	0.9872	0.7651	0.069*	
C5	0.2722 (4)	0.7491 (3)	0.80320 (17)	0.0581 (6)	
H5A	0.2747	0.7795	0.8815	0.070*	
H5B	0.3234	0.6416	0.7995	0.070*	
C6	0.0601 (3)	0.7350 (3)	0.74499 (16)	0.0558 (5)	
H6A	-0.0170	0.6425	0.7738	0.067*	
H6B	0.0001	0.8362	0.7582	0.067*	
C7	-0.1960 (3)	0.7115 (2)	0.34650 (15)	0.0397 (4)	
C8	-0.3976 (3)	0.6728 (2)	0.34434 (18)	0.0488 (5)	
H8	-0.4502	0.6599	0.4110	0.059*	
C9	-0.5213 (3)	0.6532 (2)	0.24317 (19)	0.0550 (5)	
Н9	-0.6568	0.6252	0.2421	0.066*	
C10	-0.4459 (3)	0.6747 (2)	0.14363 (18)	0.0533 (5)	
H10	-0.5299	0.6633	0.0757	0.064*	
C11	-0.2447 (3)	0.7132 (2)	0.14634 (16)	0.0465 (5)	
C12	-0.1173 (3)	0.7311 (2)	0.24693 (15)	0.0431 (5)	
H12	0.0187	0.7558	0.2478	0.052*	
C13	-0.1607 (4)	0.7390 (3)	0.03994 (19)	0.0678 (7)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.080 (6)	0.239 (15)	0.068 (4)	0.077 (8)	0.036 (4)	0.025 (7)
F2	0.181 (12)	0.073 (4)	0.084 (5)	-0.024 (5)	0.068 (6)	0.030 (3)
F3	0.101 (4)	0.137 (6)	0.034 (2)	-0.039 (3)	0.004 (2)	-0.019 (3)
F1'	0.076 (5)	0.169 (5)	0.045 (3)	-0.041 (5)	0.018 (3)	0.015 (2)
F2'	0.131 (5)	0.163 (13)	0.069 (4)	0.063 (6)	0.011 (3)	0.082 (5)
F3'	0.162 (13)	0.134 (7)	0.110 (7)	-0.058 (7)	0.102 (7)	-0.063 (6)
01	0.0457 (8)	0.0851 (10)	0.0442 (8)	-0.0150 (7)	0.0069 (6)	0.0176 (7)
O2	0.0486 (9)	0.0841 (10)	0.0579 (9)	-0.0113 (7)	0.0145 (7)	0.0199 (8)
N1	0.0305 (8)	0.0538 (9)	0.0377 (8)	0.0042 (6)	0.0091 (6)	0.0052 (6)
N2	0.0362 (9)	0.0661 (10)	0.0383 (8)	-0.0009 (7)	0.0095 (6)	0.0085 (7)
N3	0.0411 (9)	0.0651 (10)	0.0384 (9)	0.0008 (7)	0.0121 (7)	0.0101 (7)

supplementary materials

C1	0.0336 (10)	0.0569 (11)	0.0391 (10)	0.0034 (7)	0.0083 (7)	0.0050 (8)
C2	0.0355 (10)	0.0562 (10)	0.0434 (10)	0.0045 (8)	0.0122 (8)	0.0092 (8)
C3	0.0367 (11)	0.0726 (13)	0.0494 (12)	0.0034 (9)	0.0046 (8)	0.0050 (9)
C4	0.0580 (13)	0.0657 (12)	0.0454 (11)	0.0077 (10)	-0.0032 (9)	0.0039 (9)
C5	0.0684 (15)	0.0678 (12)	0.0393 (11)	0.0164 (10)	0.0048 (9)	0.0073 (9)
C6	0.0599 (13)	0.0737 (13)	0.0381 (11)	0.0107 (10)	0.0174 (9)	0.0105 (9)
C7	0.0339 (9)	0.0452 (9)	0.0413 (10)	0.0065 (7)	0.0079 (7)	0.0036 (7)
C8	0.0353 (10)	0.0599 (11)	0.0533 (12)	0.0066 (8)	0.0122 (8)	0.0029 (9)
C9	0.0312 (10)	0.0677 (12)	0.0643 (13)	0.0034 (8)	0.0027 (9)	0.0014 (10)
C10	0.0460 (11)	0.0588 (12)	0.0514 (12)	0.0056 (8)	-0.0056 (9)	0.0014 (9)
C11	0.0458 (11)	0.0500 (10)	0.0431 (11)	0.0041 (8)	0.0043 (8)	0.0031 (8)
C12	0.0340 (10)	0.0532 (10)	0.0425 (10)	0.0036 (7)	0.0079 (8)	0.0032 (8)
C13	0.0696 (17)	0.0860 (17)	0.0429 (13)	-0.0120 (13)	0.0051 (11)	0.0021 (12)

Geometric parameters (Å, °)

F1—C13	1.290 (9)	C4—C5	1.511 (3)
F2—C13	1.327 (7)	C4—H4A	0.9700
F3—C13	1.295 (7)	C4—H4B	0.9700
F1'—C13	1.273 (7)	C5—C6	1.511 (3)
F2'—C13	1.291 (7)	C5—H5A	0.9700
F3'—C13	1.326 (10)	С5—Н5В	0.9700
O1—C1	1.217 (2)	С6—Н6А	0.9700
O2—C2	1.214 (2)	С6—Н6В	0.9700
N1—C2	1.396 (2)	С7—С8	1.380 (3)
N1—C1	1.400 (2)	C7—C12	1.390 (2)
N1—C7	1.422 (2)	C8—C9	1.381 (3)
N2—C1	1.355 (3)	С8—Н8	0.9300
N2—N3	1.406 (2)	C9—C10	1.381 (3)
N2—C3	1.453 (3)	С9—Н9	0.9300
N3—C2	1.354 (3)	C10—C11	1.376 (3)
N3—C6	1.464 (3)	С10—Н10	0.9300
C3—C4	1.515 (3)	C11—C12	1.387 (3)
С3—НЗА	0.9700	C11—C13	1.490 (3)
С3—Н3В	0.9700	C12—H12	0.9300
C2—N1—C1	109.80 (15)	C8—C7—C12	120.05 (18)
C2—N1—C7	125.31 (15)	C8—C7—N1	120.65 (16)
C1—N1—C7	124.89 (15)	C12—C7—N1	119.29 (16)
C1—N2—N3	108.32 (15)	С7—С8—С9	119.93 (19)
C1—N2—C3	125.36 (15)	С7—С8—Н8	120.0
N3—N2—C3	114.04 (15)	С9—С8—Н8	120.0
C2—N3—N2	109.04 (14)	C10—C9—C8	120.72 (19)
C2—N3—C6	124.67 (16)	С10—С9—Н9	119.6
N2—N3—C6	113.84 (17)	С8—С9—Н9	119.6
O1-C1-N2	126.13 (18)	C11—C10—C9	119.07 (19)
O1-C1-N1	127.85 (18)	C11-C10-H10	120.5
N2—C1—N1	106.00 (15)	С9—С10—Н10	120.5
O2—C2—N3	126.31 (18)	C10-C11-C12	121.19 (18)
O2—C2—N1	127.89 (19)	C10-C11-C13	119.88 (18)

N3—C2—N1	105.78 (15)	C12—C11—C13	118.92 (18)
N2—C3—C4	108.52 (15)	C11—C12—C7	119.03 (17)
N2—C3—H3A	110.0	C11—C12—H12	120.5
С4—С3—НЗА	110.0	C7—C12—H12	120.5
N2—C3—H3B	110.0	F1'	19.8 (11)
С4—С3—Н3В	110.0	F1'—C13—F2'	102.7 (6)
НЗА—СЗ—НЗВ	108.4	F1—C13—F2'	119.0 (9)
C5—C4—C3	111.21 (18)	F1'—C13—F3	121.8 (6)
С5—С4—Н4А	109.4	F1—C13—F3	110.6 (8)
C3—C4—H4A	109.4	F2'—C13—F3	80.6 (6)
C5—C4—H4B	109.4	F1'—C13—F3'	101.7 (9)
C3—C4—H4B	109.4	F1—C13—F3'	85.2 (8)
H4A—C4—H4B	108.0	F2'—C13—F3'	108.5 (8)
C4—C5—C6	112.16 (17)	F3—C13—F3'	31.0 (10)
C4—C5—H5A	109.2	F1'—C13—F2	90.1 (7)
С6—С5—Н5А	109.2	F1—C13—F2	109.1 (9)
C4—C5—H5B	109.2	F2'—C13—F2	21.3 (6)
С6—С5—Н5В	109.2	F3—C13—F2	101.7 (5)
H5A—C5—H5B	107.9	F3'—C13—F2	128.5 (8)
N3—C6—C5	108.21 (15)	F1'—C13—C11	116.0 (4)
N3—C6—H6A	110.1	F1—C13—C11	113.0 (6)
С5—С6—Н6А	110.1	F2'—C13—C11	115.8 (5)
N3—C6—H6B	110.1	F3—C13—C11	113.8 (5)
С5—С6—Н6В	110.1	F3'—C13—C11	110.9 (6)
H6A—C6—H6B	108.4	F2—C13—C11	107.9 (4)
C1—N2—N3—C2	-10.91 (19)	C2—N3—C6—C5	166.81 (17)
C3—N2—N3—C2	-155.52 (16)	N2—N3—C6—C5	-55.5 (2)
C1—N2—N3—C6	-155.05 (16)	C4—C5—C6—N3	52.4 (2)
C3—N2—N3—C6	60.3 (2)	C2—N1—C7—C8	28.0 (3)
N3—N2—C1—O1	-172.91 (17)	C1—N1—C7—C8	-151.84 (17)
C3—N2—C1—O1	-33.3 (3)	C2—N1—C7—C12	-152.87 (16)
N3—N2—C1—N1	8.75 (18)	C1—N1—C7—C12	27.3 (2)
C3—N2—C1—N1	148.32 (18)	C12—C7—C8—C9	0.1 (3)
C2—N1—C1—O1	177.87 (19)	N1—C7—C8—C9	179.26 (16)
C7—N1—C1—O1	-2.3 (3)	C7—C8—C9—C10	-1.1 (3)
C2—N1—C1—N2	-3.83 (18)	C8—C9—C10—C11	1.1 (3)
C7—N1—C1—N2	176.00 (14)	C9—C10—C11—C12	-0.2 (3)
N2—N3—C2—O2	-173.49 (18)	C9—C10—C11—C13	-179.22 (19)
C6—N3—C2—O2	-34.1 (3)	C10-C11-C12-C7	-0.8 (3)
N2—N3—C2—N1	8.17 (19)	C13—C11—C12—C7	178.26 (18)
C6—N3—C2—N1	147.51 (17)	C8—C7—C12—C11	0.8 (3)
C1—N1—C2—O2	178.92 (19)	N1-C7-C12-C11	-178.35 (15)
C7—N1—C2—O2	-0.9 (3)	C10-C11-C13-F1	-158.8 (11)
C1—N1—C2—N3	-2.77 (18)	C12-C11-C13-F1	22.2 (12)
C7—N1—C2—N3	177.40 (15)	C10-C11-C13-F3	-31.7 (7)
C1—N2—C3—C4	165.83 (17)	C12—C11—C13—F3	149.3 (7)
N3—N2—C3—C4	-56.6 (2)	C10-C11-C13-F2	80.4 (7)
N2—C3—C4—C5	52.8 (2)	C12—C11—C13—F2	-98.6 (7)
C3—C4—C5—C6	-53.3 (2)		

